Exercise 86

Sketch the parabolas $y=x^{2}$ and $y=x^{2}-2 x+2$? Do you think there is a line that is tangent to both curves? If so, find its equation. If not, why not?

Solution

Below is a graph of the two parabolas along with a line that is tangent to both.

Let $P_{1}=\left(x_{1}, y_{1}\right)$ be the point on $y=x^{2}$ that the tangent line goes through, and let $P_{2}=\left(x_{2}, y_{2}\right)$ be the point on $y=x^{2}-2 x+2$ that the tangent line goes through. The slope is given by

$$
\begin{equation*}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\left(x_{2}^{2}-2 x_{2}+2\right)-\left(x_{1}^{2}\right)}{x_{2}-x_{1}} . \tag{1}
\end{equation*}
$$

The derivative of the first parabola is

$$
y^{\prime}=2 x .
$$

At $x=x_{1}$, the slope must be m.

$$
\begin{equation*}
2 x_{1}=m \tag{2}
\end{equation*}
$$

The derivative of the second parabola is

$$
y^{\prime}=2 x-2 .
$$

At $x=x_{2}$, the slope must be m.

$$
\begin{equation*}
2 x_{2}-2=m \tag{3}
\end{equation*}
$$

Solve equations (1), (2), and (3) for x_{1}, x_{2}, and m.

$$
x_{1}=\frac{1}{2} \quad x_{2}=\frac{3}{2} \quad m=1
$$

The point P_{1} is $\left(\frac{1}{2}, \frac{1}{4}\right)$. Therefore, the line tangent to both parabolas is

$$
y-\frac{1}{4}=1\left(x-\frac{1}{2}\right),
$$

or

$$
y=x-\frac{1}{4} .
$$

